Structure Reports

Online
ISSN 1600-5368

Dmitry V. Albov,* Eugenia I. Turubanova, Victor B. Rybakov, Eugene V. Babaev and Leonid A. Aslanov
Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
albov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.107$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(4-Bromophenacyl)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-2-carbonitrile

The title compound, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$, was synthesized and characterized by ${ }^{1} \mathrm{H}$ NMR and X-ray diffraction techniques.

Received 8 June 2004 Accepted 11 June 2004 Online 26 June 2004

Comment

We have described earlier the crystal structure of 4,6-di-methyl-2-oxo-1,2-dihydro-pyridin-3-carbonitrile, (1) (Rybakov et al., 2004). We report here the crystal structure of the product of its phenacylation, namely N-(4-bromophenacyl)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-2-carbonitrile, (2).

In the pyridine ring of (2), the single and double bonds alternate, though allowing some degree of conjugation. This ring is planar to within 0.0128 (18) \AA (Fig. 1).

Atoms attached to the pyridine moiety (O2, C31, C41 and C61) lie in its plane. The benzene ring is planar to within 0.006 (2) \AA and atom Br1 lies in that plane. The torsion angle $\mathrm{C} 14-\mathrm{C} 9-\mathrm{C} 8-\mathrm{O} 8$ is $6.4(5)^{\circ}$ and the dihedral angle between the benzene and pyridine rings is $85.59(9)^{\circ}$.

Experimental

Potassium hydroxide ($5.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) and ethanol (100 ml) were placed in a flask. Compound (1) $(13.4 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added in small quantities with rotation of the flask. This mixture was stirred for 20 min and the ethanol was evaporated. To the resulting solid, DMF $(200 \mathrm{ml})$ and phenacyl bromide $(0.1 \mathrm{~mol})$ were added. The mixture was stirred for 2 h with heating (323 K), cooled and poured into cold water. The resulting precipitate was filtered off and dried in air. To separate the mixture of two isomers $[\mathrm{N}$-isomer (2) and O-isomer $(2 a)]$, the precipitate was placed on a Shott filter and washed several times with chloroform. Thus, we partly isolated isomer (2). The filtrate contained both isomers and these were separated on a chromatographic column (eluant chloroform) (total yield $13.9 \mathrm{~g}, 42 \%$; m.p. 498-499 K). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $2.32\left(s, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 2.40(s$, $\left.3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 5.62\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.32(s, 1 \mathrm{H}, 5-\mathrm{CH}), 7.35-7.37,8.19-8.21$ ($d d, 4 \mathrm{H}, \mathrm{Ar}$).

Crystal data

```
\(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}\)
\(M_{r}=345.19\)
Monoclinic, \(P 2_{1} / c\)
\(a=9.5667(16) \AA\)
\(b=7.3784(12) \AA\)
\(c=20.850(4) \AA\)
\(\beta=95.34\) (1) \({ }^{\circ}\)
\(\begin{aligned} \beta & =95.34(1)^{\circ} \\ V & =1465.4 \text { (4) } \AA^{3}\end{aligned}\)
\(Z=4\)
```

$D_{x}=1.565 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=33-35^{\circ}$
$\mu=3.88 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.15 \times 0.15 \times 0.15 \mathrm{~mm}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=33-35^{\circ}$
$\mu=3.88 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, orange
$0.15 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: none
3007 measured reflections
3007 independent reflections
2444 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.107$
$S=1.03$
3007 reflections
192 parameters
H-atom parameters constrained
$\theta_{\text {max }}=74.9^{\circ}$
$h=-11 \rightarrow 11$
$k=0 \rightarrow 9$
$l=0 \rightarrow 26$
1 standard reflection every 200 reflections intensity decay: 1%

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0542 P)^{2}\right. \\
& +0.9586 P]
\end{aligned}
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-0.39$ e \AA^{-3}
Extinction correction: none

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 12$	$1.896(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.362(4)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.376(3)$	$\mathrm{C} 6-\mathrm{C} 11$	$1.493(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.394(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.526(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.460(3)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.209(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.232(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.485(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.451(3)$	$\mathrm{C} 9-\mathrm{C} 14$	$1.388(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.372(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.391(4)$
$\mathrm{C} 3-\mathrm{C} 31$	$1.436(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.390(4)$
$\mathrm{C} 31-\mathrm{N} 31$	$1.142(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.374(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.397(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.384(4)$
$\mathrm{C} 4-\mathrm{C} 41$	$1.507(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.376(4)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$123.0(2)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 61$	$119.4(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$120.4(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$109.6(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7$	$116.2(2)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{C} 9$	$121.0(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$121.2(2)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{C} 7$	$119.8(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$123.7(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$119.1(2)$
N1-C2-C3	$115.1(2)$	$\mathrm{C} 14-\mathrm{C} 9-\mathrm{C} 10$	$119.3(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 31$	$121.1(2)$	$\mathrm{C} 14-\mathrm{C} 9-\mathrm{C} 8$	$118.1(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.1(2)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$122.6(2)$
$\mathrm{C} 31-\mathrm{C} 3-\mathrm{C} 2$	$116.8(2)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$120.1(3)$
N31-C31-C3	$177.3(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$119.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.7(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$121.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 41$	$122.2(3)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 1$	$120.0(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 41$	$119.1(3)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{Br} 1$	$118.7(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.2(3)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$119.2(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$119.9(3)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 9$	$120.8(3)$
C5-C6-C61	$120.6(3)$		

H atoms bonded to C atoms were included in calculated positions and refined as riding atoms. Calculated $\mathrm{C}-\mathrm{H}$ bond lengths are in the range 0.93-0.99 \AA. For methyl H atoms, $U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}$ of the carrier atoms; for other H atoms, $U_{\text {iso }}$ values were set at $1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97

Figure 1
ORTEP-3 (Farrugia, 1997) plot of the title molecule and the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002) (project No. 02-07-90322).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Rybakov, V. B., Bush, A. A., Babaev, E. V. \& Aslanov, L. A. (2004). Acta Cryst. E60, 160-o161.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

